US ERA ARCHIVE DOCUMENT

Compact multi-pollutant mid-IR laser spectroscopic trace-gas sensor towards applications in distributed wireless sensor networks

Gerard Wysocki
Andreas Hangauer, Clinton Smith,
Stephen So#, Oscar Li

Princeton University Electrical Engineering Dept., Princeton NJ 08544

Sentinel Photonics, Monmouth Junction, NJ 08852 USA

Trace Gas Sensing Applications

Environmental Monitoring

Copyrights © 2006 by ECO MEDICS AG

Urban and Industrial Emission Measurements

Industrial Process Control

Remote sensing and Space exploration

Fundamental Science

Law Enforcement and National Security

PULSE Motivation

- Sensing of airborne chemicals is of importance in a number of atmospheric monitoring applications and will play a major role in further improvement of emissions inventories
- Recent studies indicate that industrial emissions may be 10-20x greater than the amount estimated using current standard emission factors
- Development of new, sensitive, multi-species sensing technologies, which can be configured into wireless sensor networks (WSNs) to create dynamic pollutant concentration maps will be a critical step towards improvement of the emission control and monitoring

Laser Spectroscopy

- High sensitivity
- High selectivity
- Non-destructive
- Fast
- No sample preparation
- Remote sensing
- Field deployable

Laser Absorption Spectroscopy

Beer-Lambert's Law of Linear Absorption

$$I = I_0 \cdot e^{-\alpha(\nu) \cdot L}$$

 $\alpha(v)$ - absorption coefficient [cm⁻¹]; L – path length [cm] v - frequency [cm⁻¹];

$$\alpha(\nu) = S(T) \cdot g(\nu - \nu_0) \cdot N$$

N – concentration [molecule⋅cm⁻³]

S - molecular line intensity [cm⁻¹/(molecule·cm⁻²)]

 $g(v-v_0)$ - normalized lineshape function [cm], (Gaussian, Lorentzian, Voigt)

Existing WSN platform

- Semiconductor lasers used as spectroscopic sources can yield compact, sensitive and selective spectroscopic trace-gas sensors
- We have developed a ultra-low-power embedded laser spectroscopic sensor systems employing telecommunication diode lasers for atmospheric CO₂ monitoring
- Modular expansion design allows for flexibility in configuration for specific applications as well as for efficient adoption of new laser technologies

Demo of CO₂ Sensor @ 2 microns

- Fully autonomous, fully digital
- ~0.3W total consumption (continuous)
 w/ wireless transmission
- >16 Hour run time on NiMH AA batteries (continuous)
- CO₂ sensor node:
 - Sensitivity ~120ppb in 1sec.
 - 3.5 meter multipass cell

Existing WSN platform

Laser spectroscopic WSN for CO₂ monitoring around the E-QUAD at Princeton University

Data from the WSN shown with the commercial CO₂ analyzer available on site

- Time-division-multiple-access network (TDMA) scheme based on commercial wireless communications cards coupled with the sensor electronics via UART
- Nodes 1 and 3 were solar-powered during the entire deployment.
- The sensors show consistent results and the network interaction is virtually transparent.

Challenges in multi-species detection

- Most chemical compounds in gas phase (including volatile organic compounds, or hydrocarbons) have their strongest fundamental rovibrational transitions in the mid-infrared region (~3-16 μm).
- To perform spectroscopic multi-component analysis of chemical species, widely tunable mid-IR laser sources are needed
- Similarly spectroscopic instrumentation that is capable of identification and quantification of large molecular compounds with broadband spectral signatures (e.g. VOCs and other environmentally important molecules) require wide spectral tuning

Therefore:

• Mid-IR spectroscopy and spectroscopic WSNs can greatly benefit from the development and implementation of new widely tunable laser sources for multi-component chemical analysis

Quantum Cascade Lasers: Basic Facts

- Laser wavelengths in the Mid-IR range : ($\sim 3 24 \mu m$, band structure engineering)
- High laser power: (>500mW cw, >5W peak for pulsed)
- Tunable single frequency operation (DFB up to ~10 cm⁻¹, EC >300 cm⁻¹)
- Linewidth (<0.001cm⁻¹ for CW and <0.03 cm⁻¹ for pulsed) (Cascading: 1 electron = N photons; WPE ~50% recently reported)
- High reliability, long lifetime
- Room temperature operation : (CW: above RT)
- Compact
- Commercially available

Project Goal and research tasks

 Develop a sensor node with WSN capabilities for detection of multiple trace-gas pollutants

Specific tasks:

- Adopt widely tunable quantum cascade laser technology for spectroscopy of broadband absorbers
- ► Build a proof-of-concept prototype spectrometer targeting Benzene (C₆H₆) and Ammonia (NH₃) to demonstrate multispecies detection
- Preform instrument field test and inter-comparison with other established technologies

Mode-hop Free Tunable External Cavity QCL

- High resolution mode-hop free wavelength tuning
 - PZT controlled EC-length
 - PZT controlled grating angle
 - QCL current control
- Motorized coarse grating angle tuning

G. Wysocki et al. APB92 p.305 (2008)

EC-QCLs for Atmospheric Trace-gas Sensing

Princeton University Laser Sensing Group

Miniature EC-QCL

- High efficiency thermal management
- Integrated micro-aligned optics
- >200ml total size of the laser head
- High mechanical and thermal stability

New technology for QCL tuning

Tuning range

- Excellent opto-mechanical stability
- Ideal for field deployments
- Fully electrical broadband tuning
 - Gain current tuning: narrow, continuous
 - DBR current tuning: wide, discrete (controlled longitudinal mode hopping)

Source: P. Fuchs, et. al, Opt. Express 20, 3890-3897 (2012).

Comparison of tunable QCL technologies

Parameters	External Cavity EC-QCL	Distributed Bragg Grating DBR-QCL	Distributed feedback DFB-QCL
Maximum Tunability	up to 400cm ⁻¹	~10cm ⁻¹ (electrical); >20cm ⁻¹ (thermal)	1-2cm ⁻¹ (electrical); ~10cm ⁻¹ (thermal)
Scan repetition rate	Slow (<100Hz)	Fast (10-100kHz) (thermal- slow)	Fast (10-100kHz) (thermal- slow)
Construction / tuning	Moving parts / Opto- mechanical	No moving parts / electrical	No moving parts / electrical

Spectroscopy of C_6H_6 in the mid-IR

- (A) Absorption features of 100ppb Benzene (blue) over 100m optical path plotted together with average atmospheric absorption (red).
- (B) The strongest absorption band of Benzene (blue) and the atmospheric interference (red) calculated for 1m optical path
- (C) The absorption band of Benzene (blue) at 9.63µm and the atmospheric interference (red) calculated for 100m optical path
- (D) and (E) pre-conditioned air sample with CO₂ scrubbed to 1ppm level and moisture removed down to -10°C dew point.

Preliminary spectroscopy of C_6H_6 at $9.6\mu m$

- Spectral simulations of the C_6H_6 band at 9.6 μ m
 - The entire feature spans ~50cm⁻¹
 - The Q-branch at 1037cm⁻¹ is narrow (~3cm⁻¹) and shows relatively small interference from other species
- Preliminary transmission data collected using a DFB-QCL operating at 1037cm⁻¹
- The 5 cm⁻¹ thermal tuning range of a DFB QCL gives access to both species (C₆H₆ and NH₃) and could be used for detection
- DBR-QCL with >10cm⁻¹ fast electrical tuning best for trace-gas WSN-node

Simulation of wavelength modulated spectra of C_6H_6 at $9.6\mu m$

- Wavelength modulation spectroscopy (WMS) shifts the demodulated spectroscopic signal to higher frequencies
- Reduction of the 1/f noise and smaller detection bandwidth than in direct-LAS will result in higher sensitivity
- A DFB-QCL current modulation amplitude of ~54 mA provides optimum (~0.5cm⁻¹) modulation depth

Summary

- The spectroscopic WSN platform has been tested in the field and showed results consistent with other commercial sensors
- Preliminary spectroscopy of C₆H₆ with DFB-QCL has been performed
- DBR-QCL technology has been identified as the most promising broadband mid-IR source for WSN applications
- DBR-QCL is currently under test in our laboratory

Acknowledgements

 Dr. Johannes Koeth at Nanoplus GmbH for providing DBR-QCL for this study

Funding:

- EPA STAR Program
- NSF ERC MIRTHE
- NSF MRI program

